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Background



Knots are circles embedded in 3-dimensional space

Intuitively, a knot is a piece of string that has been tangled around
itself with no self-intersection in 3D space with the ends connected
to each other.

Figure 1: A knot.



Knots and links can be represented by diagrams

Figure 2: Diagrams of the trivial knot and trefoil knot.

Figure 3: A diagram of a link.



Knots and links can be represented by diagrams

Figure 4: A much more complex diagram of the unknot



A knot or link can be assigned an orientation

Any component of a projection (i.e. any distinct curve) can be
assigned a consistent direction moving along the curve, called an
orientation. Any projection with orientations assigned is called
oriented.

Figure 5: A non-oriented and oriented trefoil knot.



Reidemeister Moves can be performed on a projection to
produce another projection of the same knot

Figure 6: Reidemeister moves of Type I, II, and III



All projections of a knot are connected by a series of
Reidemeister moves

Theorem (Reidemeister)

Diagrams D and E represent the same knot if and only if D and E
are connected by a series of Reidemeister moves.



The Problem

Can we find good (or better) lower and/or upper bounds on the
number of Reidemeister moves needed to transform one projection
of a knot into a another. Particularly, can we use a knot diagram
invariant to do so?



Motivation

I A solution to the problem has applications in finding an
algorithm for determining a series of Reidemeister moves
between diagrams;

I And more broadly, algorithmically distinguish knots



Diagram Invariants and Current Work



Writhe is the sum of signs of crossings

Assign each crossing of an oriented knot or link projection with a
positive or negative 1, based on the picture below. For a crossing
c , we call this number the sign of c , or sgn(c). The sum of signs
among all crossings is called the writhe.

Figure 7: Positive and negative crossings of oriented knots



Writhe is the sum of signs of crossings

Figure 8: The writhe is (−1) + (−1) + (−1) = −3



Self-Crossing Index (SCI): Calculating Index

To calculate this diagram invariant, first, the index of a region
must be defined. Set the exterior region to have index 0 and use
the following rule:

Figure 9: Rule for assigning index to regions of a diagram.



We can label all the regions of a knot with indices

Figure 10: First assign an index of 0 to the exterior region.



We can label all the regions of a knot with indices

Figure 11: Then assign indices to the regions adjacent to the exterior
region.



We can label all the regions of a knot with indices

Figure 12: Diagram with all indices of regions assigned.



Self-Crossing Index (SCI) is a diagram invariant

sgn(c) = ±1

qInd(c) =
(r + 1) + r + r + (r − 1)

4
= r

SCI(K ) =
∑
c∈C

sgn(c) qInd(c)



Self-Crossing Index (SCI)

Figure 13: SCI is (1)(7)(1) + (−1)(8)(5) + (−1)(2 + 3 + 4 + 5) + (1)(2 +
3 + 4 + 5) + (1)(1 + 2 + 3 + 4) = −23



Changes to SCI under Reidemeister moves are well
understood

Under Reidemeister Type 1 moves, SCI can change by any number.

Under Reidemeister Type 2 moves, SCI is unchanged.

Under Reidemeister Type 3 moves, SCI changes by ±1.



For framed knot diagrams, SCI only changes under framed
Reidemeister Type 3 moves

Figure 14: Under framed Reidemeister 1 moves, SCI remains unchanged.

Figure 15: Under framed Reidemeister 2 moves, SCI remains unchanged.

Figure 16: Under framed Reidemeister 3 moves, SCI changes by ±1.



The difference in SCI is a lower bound to the number of
framed Reidemeister moves between framed knot diagrams

Figure 17: From Hass and Nowik, 2007

SCI(Dn) = −1

2
(3n2 − n + 2)



Conclusion



Summary

Problem: Can we use knot diagram invariants to find good (or
better) lower and/or upper bounds on the number of Reidemeister
moves needed to transform one projection of a knot into a another?

I SCI is the sum of the product of the sign and index of each
crossing of a diagram.

I SCI change predictably under framed Reidemeister moves.

I We have found a quadratic lower bound for a family of knots.



Future Work:

I Develop a diagram invariant or value of a knot that is useful
for all knots.

I Is there a family of unknots that needs a polynomial of the
number of crossings of at least degree 3 in terms of
Reidemeister moves to get the trivial projection?

I Could bounds for framed unknots give bounds for unknots or
for all knots in general?
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